Research

CASCADE SURVEILLANCE COMPLEXES

In bacteria, the clustered regularly interspaced short palindromic repeats (CRISPR)–associated (Cas) DNA-targeting complex Cascade (CRISPR-associated complex for antiviral defense) uses CRISPR RNA (crRNA) guides to bind complementary DNA targets at sites adjacent to a trinucleotide signature sequence called the protospacer adjacent motif (PAM). The Cascade complex then recruits Cas3, a nuclease-helicase that catalyzes unwinding and cleavage of foreign double-stranded DNA (dsDNA) bearing a sequence matching that of the crRNA. Cascade comprises the CasA–E proteins and one crRNA, forming a structure that binds and unwinds dsDNA to form an R loop in which the target strand of the DNA base pairs with the 32-nt RNA guide sequence. Single-particle electron microscopy reconstructions of dsDNA-bound Cascade with and without Cas3 reveal that Cascade positions the PAM-proximal end of the DNA duplex at the CasA subunit and near the site of Cas3 association. The finding that the DNA target and Cas3 colocalize with CasA implicates this subunit in a key target-validation step during DNA interference. We show biochemically that base pairing of the PAM region is unnecessary for target binding but critical for Cas3-mediated degradation. In addition, the L1 loop of CasA, previously implicated in PAM recognition, is essential for Cas3 activation following target binding by Cascade. Together, these data show that the CasA subunit of Cascade functions as an essential partner of Cas3 by recognizing DNA target sites and positioning Cas3 adjacent to the PAM to ensure cleavage.

 See Hochstrasser and Taylor, et al. in PNAS

CAS9 RNA-GUIDED ENDONUCLEASES

The CRISPR-associated endonuclease Cas9 uses a dual-RNA guide to perform sequence-specific DNA cleavage as part of an adaptive immune response in bacteria. Cas9:RNA also functions as a robust tool for both genome engineering and site-specific gene regulation in various organisms and cell lines. We show that, in addition to providing base-pair recognition of target DNA sequences, the guide RNA triggers a conformational change in Cas9 that activates the complex for DNA surveillance. Single-particle electron microscopy reconstructions and site-specific labeling reveal that Cas9 consists of two structural lobes that undergo guide RNA-induced reorientation to create a central channel where DNA substrates are bound. The discovery that extensive structural rearrangements occur before target binding implicates RNA loading as a key regulator of enzyme function.

See Jinek, Jiang, Taylor, and Sternberg, et al. in Science.

RNA-TARGETING TYPE III CRISPR-CAS COMPLEXES

The CRISPR-Cas system is a prokaryotic host defense system against genetic elements. The Type III-B CRISPR-Cas system of the bacterium Thermus thermophilus, the TtCmr complex, is composed of six different protein subunits (Cmr1-6) and one crRNA. The TtCmr complex copurifies with crRNA species of 40 and 46 nt, originating from a distinct subset of CRISPR loci and spacers. The TtCmr complex cleaves the target RNA at multiple sites with 6 nt intervals via a 5′ ruler mechanism. Electron microscopy revealed that the structure of TtCmr resembles a “sea worm” and is composed of a Cmr2-3 heterodimer “tail,” a helical backbone of Cmr4 subunits capped by Cmr5 subunits, and a curled “head” containing Cmr1 and Cmr6. Despite having a backbone of only four Cmr4 subunits and being both longer and narrower, the overall architecture of TtCmr resembles that of Type I Cascade complexes.

See Staals, Agari, Maki-Yonekura, Zhu, Taylor, et al. in Mol Cell.

See Taylor and Zhu, et al. in Science.

CRISPR-Cas is a prokaryotic adaptive immune system that provides sequence-specific defense against foreign nucleic acids. Here we report the structure and function of the effector complex of the Type III-A CRISPR-Cas system of Thermus thermophilus: the Csm complex (TtCsm). TtCsm is composed of five different protein subunits (Csm1–Csm5) with an uneven stoichiometry and a single crRNA of variable size (35–53 nt). The TtCsm crRNA content is similar to the Type III-B Cmr complex, indicating that crRNAs are shared among different subtypes. A negative stain EM structure of the TtCsm complex exhibits the characteristic architecture of Type I and Type III CRISPR-associated ribonucleoprotein complexes. crRNA-protein crosslinking studies show extensive contacts between the Csm3 backbone and the bound crRNA. We show that, like TtCmr, TtCsm cleaves complementary target RNAs at multiple sites. Unlike Type I complexes, interference by TtCsm does not proceed via initial base pairing by a seed sequence.

See Staals, Zhu, and Taylor, et al. in Mol Cell.

%d bloggers like this: