
Kiwa is a membrane-embedded defense supercomplex activated at phage attachment sites
Zhang Z, Todeschini TC, Wu Y, Kogay R, Naji A, Cardenas Rodriguez J, Mondi R, Kaganovich D, Taylor DW, Bravo JPK, Teplova M, Amen T, Koonin EV, Patel DJ, Nobrega FL. Kiwa is a membrane-embedded defense supercomplex activated at phage attachment sites. Cell. 2025 Jul 23:S0092-8674(25)00791-3. doi: 10.1016/j.cell.2025.07.002. Epub ahead of print. PMID: 40730155.

Visualization of a multi-turnover Cas9 after product release
Kiernan KA, Taylor DW. Visualization of a multi-turnover Cas9 after product release. Nat Commun. 2025 Jul 1;16(1):5681. doi: 10.1038/s41467-025-60668-7. PMID: 40593576; PMCID: PMC12217974.

Structural basis of a dual-function type II-B CRISPR-Cas9
Hibshman GN, Taylor DW. Structural basis of a dual-function type II-B CRISPR-Cas9. Nucleic Acids Res. 2025 Jun 20;53(12):gkaf585. doi: 10.1093/nar/gkaf585. PMID: 40613710; PMCID: PMC12231574.

Visualizing the conformational landscape of CRISPR-Cas9 through kinetics-informed structural studies
Hibshman GN, Taylor DW. Visualizing the conformational landscape of CRISPR-Cas9 through kinetics-informed structural studies. Methods Enzymol. 2025;712:41-53. doi: 10.1016/bs.mie.2025.01.004. Epub 2025 Mar 6. PMID: 40121081.

The assembly factor Reh1 is released from the ribosome during its initial round of translation
Musalgaonkar S, Yelland JN, Chitale R, Rao S, Ozadam H, Taylor DW, Cenik C, Johnson AW. The assembly factor Reh1 is released from the ribosome during its initial round of translation. Nat Commun. 2025 Feb 3;16(1):1278.

DNA targeting by compact Cas9d and its resurrected ancestor
Ocampo RF, Bravo JPK, Dangerfield TL, Nocedal I, Jirde SA, Alexander LM, Thomas NC, Das A, Nielson S, Johnson KA, Brown CT, Butterfield CN, Goltsman DSA, Taylor DW. DNA targeting by compact Cas9d and its resurrected ancestor. Nat Commun. 2025 Jan 7;16(1):457.

An amino acid-resolution interactome for motile cilia identifies the structure and function of ciliopathy protein complexes
McCafferty CL, Papoulas O, Lee C, Bui KH, Taylor DW, Marcotte EM, Wallingford JB. An amino acid-resolution interactome for motile cilia identifies the structure and function of ciliopathy protein complexes. Dev Cell. 2024 Dec 12:S1534-5807(24)00719-6.

Engineered PsCas9 enables therapeutic genome editing in mouse liver with lipid nanoparticles
Degtev, D., Bravo, J., Emmanouilidi, A. et al.Engineered PsCas9 enables therapeutic genome editing in mouse liver with lipid nanoparticles. Nat Commun 15, 9173 (2024).

Cas12a domain flexibility guides R-loop formation and forces RuvC resetting
I. Strohkendl, A. Saha, C. Moy, A.H. Nguyen, M. Ahsan, R. Russell, G. Palermo, D.W. Taylor. Mol Cell. 2024 Jun 26:S1097-2765(24)00485-4. doi: 10.1016/j.molcel.2024.06.007. Online ahead of print.PMID: 38955179

Plasmid targeting and destruction by the DdmDE bacterial defence system
J. P. K. Bravo, Delisa A. Ramos, Rodrigo Fregoso Ocampo, Caiden Ingram & David W. Taylor. (2024). Nature. doi: 10.1038/s41586-024-07515-9

Unraveling the mechanisms of PAMless DNA interrogation by SpRY-Cas9
Grace N. Hibshman, Jack P. K. Bravo, Matthew M. Hooper, Tyler L. Dangerfield, Hongshan Zhang, Ilya J. Finkelstein, Kenneth A. Johnson & David W. Taylor. Nature Communications (2024) doi: 10.1038/s41467-024-47830-3

RNA targeting and cleavage by the type III-Dv CRISPR effector complex
Evan A. Schwartz*, Jack P. K. Bravo*, Mohd Ahsan*, Luis A. Macias, Caitlyn L. McCafferty, Tyler L. Dangerfield, Jada N. Walker, Jennifer S. Brodbelt, Giulia Palermo, Peter C. Fineran, Robert D. Fagerlund & David W. Taylor. Nature Communications (2024) doi: 10.1038/s41467-024-47506-y

Lipid droplets as substrates for protein phase separation
Advika Kamatar, Jack P.K. Bravo, Feng Yuan, Liping Wang, Eileen M. Lafer, David W. Taylor, Jeanne C. Stachowiak, Sapun H. Parekh. Biophysical Journal (2024) doi: 10.1016/j.bpj.2024.03.015

Type III-B CRISPR-Cas cascade of proteolytic cleavages
Jurre Steens*, Jack P.K. Bravo*, Carl Raymund P Salazar*, Caglar Yildiz, Afonso M Amieiro, Stephan Kostlbacher, Stijn HP Prinsen, Constantinos Patinios, Andreas Bardis, Arjan Barendrecht, Richard A Scheltema, Thijs JG Ettema, John van der Oost, David W Taylor, Raymond Staals. Science (2024) doi: 10.1126/science.adk0378

Structural snapshots of R-loop formation by a type I-C CRISPR Cascade
O’Brien, RE, Bravo JPK, Ramos D, Hibshman GN, Wright JT, Taylor DW. Molecular Cell (2023). doi: 10.1016/j.molcel.2023.01.024

RNA targeting unleashes indiscriminate
nuclease activity of CRISPR–Cas12a2
Bravo JPK, Hallmark T, Naegle B, Beisel CL, Jackson RN, Taylor DW. Nature (2023). doi: 10.1038/s41586-022-05560-w

A single 2′-O-methylation of ribosomal RNA gates assembly of a functional ribosome
Yelland JN, Bravo JPK, Black JB, Taylor DW, Johnson, AW. (2022). doi: 10.1038/s41594-022-00891-8

Integrative modeling reveals the molecular architecture of the intraflagellar transport A (IFT-A) complex
McCafferty CL, Papoulas O, Jordan MA, Hoogerbrugge G, Nichols C, Pigino G, Taylor DW, Wallingford JB, Marcotte EM. eLife. (2022).

Constructing next-generation CRISPR–Cas tools from structural blueprints
Bravo JPK, Hibshman GN, Taylor DW. Current Opinion in Biotechnology. (2022). doi: 10.1016/j.copbio.2022.102839.

The protein organization of a red blood cell
Sae-Lee W, McCafferty CL, Verbeke EJ, Havugimana PC, Papoulas O, McWhite CD, Houser JR, Vanuytsel K, Murphy GJ, Drew K, Emili A, Taylor DW, Marcotte EM. Cell Rep. (2022) 40(3):111103. doi: 10.1016/j.celrep.2022.111103.

Cross Seeding Controls AB Fibril Populations and Resulting Functions
Lucas MJ, Pan HS, Verbeke EJ, Partipilo G, Helfman EC, Kann L, Keitz BK, Taylor DW, Webb LJ. J Phys Chem B. 2022 Mar 24;126(11):2217-2229. doi: 10.1021/acs.jpcb.1c09995. Epub 2022 Mar 11.

Structural basis for broad anti-phage immunity by DISARM
Bravo, J.P.K., Aparicio-Maldonado, C., Nobrega, F.L. et al. Structural basis for broad anti-phage immunity by DISARM. Nature Commun 13, 2987 (2022). doi: 10.1038/s41467-022-30673-1.

Structural rearrangements allow nucleic acid discrimination by type I-D Cascade
Schwartz, E.A., McBride, T.M., Bravo, J.P.K. et al. Nature Commun 13, 2829 (2022). https://doi.org/10.1038/s41467-022-30402-8


Remdesivir is a delayed translocation inhibitor of SARS CoV-2 replication
Bravo JPK, Dangerfield TL, Taylor DW, Johnson KA. Mol Cell. 2021 Apr 1;81(7):1548-1552.e4. doi: 10.1016/j.molcel.2021.01.035. Epub 2021 Jan 28. PMID: 33631104; PMCID: PMC7843106.

SCOPE enables type III CRISPR-Cas diagnostics using flexible targeting and stringent CARF ribonuclease activation
Steens JA, Zhu Y, Taylor DW, Bravo JPK, Prinsen SHP, Schoen CD, Keijser BJF, Ossendrijver M, Hofstra LM, Brouns SJJ, Shinkai A, van der Oost J, Staals RHJ. Nat Commun. 2021 Aug 19;12(1):5033. doi: 10.1038/s41467-021-25337-5. PMID: 34413302; PMCID: PMC8376896.

Isolation of the Buchnera aphidicola flagellum basal body complexes from the Buchnera membrane
Schepers MJ, Yelland JN, Moran NA, Taylor DW. Isolation of the Buchnera aphidicola flagellum basal body complexes from the Buchnera membrane. PLoS One. 2021 May 10;16(5):e0245710. doi: 10.1371/journal.pone.0245710. PMID: 33970928; PMCID: PMC8109811.

Improving integrative 3D modeling into low- to medium-resolution electron microscopy structures with evolutionary couplings
McCafferty CL, Taylor DW, Marcotte EM. Improving integrative 3D modeling into low- to medium-resolution electron microscopy structures with evolutionary couplings. Protein Sci. 2021 May;30(5):1006-1021. doi: 10.1002/pro.4067. Epub 2021 Apr 9. PMID: 33759266; PMCID: PMC8040867..

Structure of a type IV CRISPR-Cas ribonucleoprotein complex
Zhou Y, Bravo JPK, Taylor HN, Steens JA, Jackson RN, Staals RHJ, Taylor DW. Structure of a type IV CRISPR-Cas ribonucleoprotein complex. iScience. 2021 Feb 17;24(3):102201. doi: 10.1016/j.isci.2021.102201. PMID: 33733066; PMCID: PMC7937560.

Diverse CRISPR-Cas Complexes Require Independent Translation of Small and Large Subunits from a Single Gene
T.M. McBride, E.A. Schwartz, A. Kumar, D.W. Taylor, P.C. Fineran, R.D. Fagerlund. Mol Cell. 2020 Dec 17;80(6):971-979.e7. doi: 10.1016/j.molcel.2020.11.003. Epub 2020 Nov 27. PMID: 33248026

Structural basis for assembly of non-canonical small subunits into type I-C Cascade
R.E. O’Brien, I.C. Santos, D. Wrapp, J.P.K. Bravo, E.A. Schwartz, J.S. Brodbelt , D.W. Taylor. Nat Commun. 2020 Nov 23;11(1):5931. doi: 10.1038/s41467-020-19785-8. PMID: 33230133

Simplified geometric representations of protein structures identify complementary interaction interfaces
C.L. McCafferty, E.M. Marcotte, D.W. Taylor. Proteins. 2020 Nov 2. doi: 10.1002/prot.26020. PMID: 33140424

Engineered CRISPR/Cas9 enzymes improve discrimination by slowing DNA cleavage to allow release of off-target DNA.
M.S. Liu, S. Gong, H.H. Yu, K. Jung, K.A. Johnson, D.W. Taylor. Nat Commun. 2020 Jul 17;11(1):3576. doi: 10.1038/s41467-020-17411-1. PMID: 32681021

Functionalized Mesoporous Silicas Direct Structural Polymorphism of Amyloid-β Fibrils
M.J. Lucas, H.S. Pan, E.J. Verbeke, L.I. Webb, D.W. Taylor, B.K. Keitz. Langmuir. 2020 Jul 7;36(26):7345-7355. doi: 10.1021/acs.langmuir.0c00827. Epub 2020 Jun 16. PMID: 32482072

Separating distinct structures of multiple macromolecular assemblies from cryo-EM projections.
E.J. Verbeke, Y. Zhou, A.P. Horton, A.L. Mallam, D.W. Taylor, E.M. Marcotte. J Struct Biol. 2020 Jan 1;209(1):107416. doi: 10.1016/j.jsb.2019.107416. Epub 2019 Nov 11. PMID: 31726096

Structural Biology in the Multi-Omics Era
C.L. McCafferty, E.J. Verbeke, E.M. Marcotte, D.W. Taylor. J Chem Inf Model. 2020 May 26;60(5):2424-2429. doi: 10.1021/acs.jcim.9b01164. Epub 2020 Mar 10. PMID: 32129623

The final cut: Cas9 editing
D.W. Taylor. Nat Struct Mol Biol. 2019 Aug;26(8):669-670. doi: 10.1038/s41594-019-0267-1.
PMID: 31285603

Tightly-orchestrated rearrangements govern catalytic center assembly of the ribosome.
Y. Zhou, S. Musalgaonkar, A.W. Johnson, D.W. Taylor. (2019) Nature Communications 10, 958.

Kinetic Characterization of Cas9 Enzymes
M. Liu, S. Gong, H.H. Yu, D.W. Taylor, K.A. Johnson. (2019) Methods Enzymol. 616, 289-311.

Supercharging enables organized assembly of synthetic biomolecules
A.J. Simon, Y. Zhou, V. Ramasubraman, J. Glaser, A. Pothukuchy, J. Gerberich, J. Leggere, B.R. Morrow, J. Golihar, C..Jung, S.C. Glotzer, D.W. Taylor, A.D. Ellington. (2019) Nature Chemistry 11, 204-212.

Electron microscopy snapshots of single particles from single cells
X. Yi, E.J. Verbeke, Y. Chang, D.J. Dickinson, D.W. Taylor. (2019) J. Biol. Chem. 294, 1602-1608.

Classification of single particles from human cell extract reveals distinct structures
E.J. Verbeke, A.L. Mallam, K. Drew, E.M. Marcotte, D.W. Taylor. (2018) Cell Reports 24, 359-368.

Cas4 dependent prespacer processing ensures high-fidelity processing of CRISPR arrays
H. Lee, Y. Zhou, D.W. Taylor, D. Sashital. (2018) Mol. Cell 70, 48-58.

DNA unwinding is the primary determinant of CRISPR- Cas9 activity
S. Gong, H.H. Yu, K.A. Johnson, D.W. Taylor. (2018) Cell Reports 22, 359-371-851.

DNA targeting by a minimal CRISPR RNA-guided Cascade
M.L. Hochstrasser, D.W. Taylor, J.E. Kornfeld, E. Nogales, J.A. Doudna. (2016) Mol. Cell 63, 840-851.

Box C/D sRNA stem ends act as stabilizing anchors for box C/D di-sRNPs
W.S.V. Yip, H. Shigematsu, D.W. Taylor, S.J Baserga. (2016) Nucl. Acids Res. E pub 24 Jun 2016.

Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage
F. Jiang, D.W. Taylor, J.S. Chen, J.E. Kornfeld, K. Zhou, A.J. Thompson, E. Nogales, J.A. Doudna. (2016) Science. 351, 867-871.

Antigenic and cryo-electron microscopy structure analysis of a chimeric sapovirus capsid
N. Miyazaki, D.W. Taylor, G.S. Hansman, K. Murata. (2016) J Virol. 90, 2664-2675.

A Single a Helix Drives Extensive Remodeling of the Protaesome Lid and Completion of Regulatory Particle Assembly
R.J. Tomko Jr., D.W. Taylor, Z.A. Chen, H.W. Wang, J. Rappsilber, M. Hochstrasser. (2015) Cell 163, 432-444.

Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning
D.W. Taylor, Y. Zhu, R.H.J. Staals, J.E. Kornfeld, A. Shinkai, J. van der Oost, E. Nogales, J.A. Doudna. (2015) Science 348, 581-585.

Rational design of a split-Cas9 enzyme complex
A.V. Wright, S.H. Sternberg, D.W. Taylor, B.T. Staahl, J.A. Bardales, J.E. Kornfeld, J.A. Doudna. (2015) Proc. Nat. Acad. Sci. 112, 2984-2989.

RNA Targeting by the Type 111-A CRISPR-Cas Csm Complex of Thermus thermophilus
R.H.J. Staals, Y. Zhu, D.W. Taylor, J.E. Kornfeld, K. Sharma, A. Barendregt, J.J. Koehorst, M. Vlot, N. Neupane, K. Varossieau, K. Sakamoto, T. Suzuki, N. Dohmae, S. Yokoyama, P.J. Schaap, H. Urlaub, A.J.R. Heck, E. Nogales, J.A. Doudna, A. Shinkai, J. van der Oost. (2014) Mol. Cell 56, 518-530.

CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference
M.L. Hochstrasser, D.W. Taylor, P. Bhat, C.K. Guegler, S.H. Sternberg, E. Nogales, J.A. Doudna. (2014) Proc. Nat. Acad. Sci. 111, 6618–6623.

Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation
M. Jinek, F. Jiang, D.W. Taylor, S.H. Sternberg, E. Kaya, S.H. Sternberg, E. Ma, C. Anders, M. Hauer, K. Zhou, S. Lin, M. Kaplan, A.T. Iavarone, E. Charpentier, E. Nogales, J.A. Doudna. (2014) Science 343, 1247997.

Structure and activity of an RNA-targeting Type III-B CRISPR-Cas complex in Thermus thermophilus
R.H.J. Staals, Y. Agari, S. Maki-Yonekura, Y. Zhu, D.W. Taylor, E. van Duijn, A. Barendregt, M. Vlot, J.J. Koehorst, K. Sakamoto, A. Masuda, N. Dohmae, P.J. Schaap, J.A. Doudna, A.J.R. Heck, K. Yonekura, J. van der Oost, A. Shinkai. (2013) Mol. Cell 52, 135-145.


Substrate-specific structural rearrangements of human Dicer
D.W. Taylor, E. Ma, H. Shigematsu, M.A. Cianfrocco, C.N. Noland, K. Nagayama, E. Nogales, J.A. Doudna, H.W. Wang. (2013) Nat. Stuct. Mol. Biol. 20, 662-670.

An RNA degradation machine sculpted by Ro auto antigen and noncoding RNA
X. Chen, D.W. Taylor, C.C. Fowler, J.E. Galan, H.W. Wang, S.L. Wolin. (2013) Cell 153, 166-177.

The box C/D sRNP dimeric architecture is conserved across domain Archaea
K.R. Bower-Phipps, D.W. Taylor, H.W. Wang, S.J. Baserga. (2012) RNA 18, 1553-1562.

Structural basis for broad detection of genogroup II noroviruses by a monoclonal antibody that binds to a site occlude in the viral particle
G.S. Hansman, D.W. Taylor, J.S. McLellan, T.J. Smith, I. Georgiev, J.R.H. Tame, S.Y. Park, M. Yamazaki, F. Gondaira, M. Miki, K. Katayama, K. Murata, P.D. Kwong. (2012) J. Virol. 86, 3635-3646.

Two modes of interaction between the membrane-embedded TARP stargazer’s C-terminal domain and the bilayer visualized by electron crystallography
M.F. Roberts, D.W. Taylor, V.M. Unger. (2011) J. Struct. Biol. 174, 542-551.

A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity
D. Cifuentes, H. Xue, D.W. Taylor, H. Patnode, Y. Mishima, S. Cheloufi, E. Ma, S. Mane, G.J. Hannon, N.D. Lawson, S.A. Wolfe, A.J. Giraldez. (2010) Science 328, 1694-1698.

